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ABSTRACT 

Theoretical methods are presented for  the analytic and 
experimental determination of mechanical impedance and 
its associated effects on the dynamic response of linear, 
multi-degree of freedom/multi-dimensional s y s t e m s. 
Impedance matrices a re  formulated which a r e  useful in 
describing and, predicting the frequency dependent charac- 
teristic properties of these systems. The problem of inter- 
connecting subsystems is formulated in te rms  of composite 
impedance matrices and interconnection equations, from 
which critical frequencies (resonances and anti-resonances) 
and dynamic response of the composite system may be ob- 
tained. Analytical and experimental procedures for the 
evaluation of these matrices are also discussed. To demon- 
strate the application of some of the procedures, an ex- 
ample problem is solved. Moreover, the results of this 
study a r e  sufficiently general for extending the approach to 
many types of distributed system configurations subject to 
varied excitation phenomena. 
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MECHANICAL IMPEDANCE ANALYSIS 
FOR LUMPED PARAMETER MULTI-DEGREE 

OF FREEDOM/MULTI-DIMENSIONAL SYSTEMS 

bY 
Frank J. On 

Goddard Space Flight Center 

1. INTRODUCTION 

The analysis of mechanical systems under dynamic loadings requires that the dynamic char- 
acteristics of the systems be known in addition to the characteristics of the excitations. In com- 
plex linear systems, it is useful to specify these system dynamic characteristics in terms of 
mechanical impedance (References 1 and 2). 

In this study a mechanical impedance* analysis of complex systems is developed. This anal- 
y s i s  ultimately may serve as an analytical tool in the computation of impedances and as a guideline 
in the laboratory measurement of impedances. 

The basic philosophy adopted in this analysis is based on the idea of breaking up a complex 
system into component parts with simple dynamic properties of mass, stiffness, and damping that 
can be formulated readily in matrix notation. Appropriate component matrices a re  then considered 
as building blocks, that when fitted together according to a set  of predetermined rules, provide the 
mechanical impedance characteristic of the entire system. Such a philosophy has been practiced 
in the well known method of influence coefficients (and related methods) of structural analysis. The 
matrix formulation of mechanical impedance may be considered as a natural extension of these 
methods, and like them it is well suited for processing by digital computers. 

The results of these extensions to the determination of mechanical impedance require the re- 
interpretation of matrix parameters in terminologies that can be associated with the basic concepts 
of impedance. This is accomplished by manipulating equations of motions to appropriate forms 
physically corresponding to impedance quantities such as point and transfer impedances, free 
velocity and blocked force, etc. 

*Although mechanical impedance and mobility are respectively defined as the complex ratio of sinusoidal force to sinusoidal velocity 
and of sinusoidal velocity to sinusoidal force, four other ratios between sinusoidal force and sinusoidal displacement and acceleration 
are equally useful. Thus the developments here may refer to a l l  s i x  ratios. 
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In order to present a method of analysis that is not confined to any particular type of struc- 
tural system, a general method based on multi-degree of freedom, multi-dimensional systems* is 
adopted. The necessity of treating real  complex structural systems as multi-dimensional systems 
has been recognized among environmental engineers for many years, but impedance concepts for 
multi-dimensional systems have been advocated only recently. This is largely due to the recogni- 
tion that as aerospace structural systems become larger and more complex, one-dimensional im- 
pedance concepts are inadequate (Reference 3). Also, as the demands for larger environmental 
test  facilities to accommodate these systems become more impractical, the use of subassembly 
and component testing philosophies becomes imperative. It is hoped that an appreciation of the 
generalized mechanical impedance approach will be gained from the developments herein. In par- 
ticular, two aspects of the approach will be emphasized: (a) it provides both a means of analyzing 
complex structural systems by partitionin: into successive smaller systems, and a natural means 
for matching boundary conditions; and (b) it provides a useful, sound basis for performing and cor- 
relating subassembly and component environmental tests, obviating the requirement for huge test  
facilities. 

In the following sections, the theoretical relations and methods of evaluating the pertinent 
parameters required for the successful application of this concept a r e  presented. 

2. EQUATIONS OF MOTION 

It is well known that complex linear time invariant mechanical systems can be analyzed in 
terms of their lumped parameter equivalents. The matrix equation of motion for such a grid net- 
work of lumped elements is given by: 

where x denotes generalized coordinates and N denotes the number of degrees of freedom. The 
description of a particular system is contained in the coefficient matrices [ m a p ]  , [ c a p ]  and [kap] t; 
the type of excitation is described by the column matrix {fa}. 

In summation form, Equation 1 may be written as: 

*Multi (or single) degree of freedom systems whose motions are confined along a single dimensional space are considered one- 
dimensional. Systems which are not one-dimensional are consequently both multi-dimensional and multi-degree of freedom. 

tc,p is the damping force at  x, due to a unit velocity a t  x p ;  k a p  is the elastic force a t  x, due to a unit displacement a t  x p ;  m a p  
contains scalar information regarding masses a s  well a s  first and second moments of the masses. In a simple system consisting of 
mass particles connected by springs and dash-pots, having no coupling, m a  , would be either the mass or the principal moment of 
inertia of the ath particle. A l l  m a p  transfer masses, first products and crossproducts of inertia would then be zero. 
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3. MECHANICAL IMPEDANCE APPROACH 

Mechanical impedance is formally defined for linear systems over the domain of frequency as 
the ratio of the Fourier transforms of the force excitation and the velocity response. By Fourier 
transformation, Equation 2 may be written as the set 

where 

w = Zrrf = circular frequency, 

vp ( w )  = Fourier transform of velocity, kp ( t  ) , 

Fa (0 )  = Fourier transform of force excitation, f a  ( t  ) . 

Letting 

zap (w) = iwmap t cap t kap/ iw (4) 

represent the frequency-dependent characteristic property of the system, Equation 3 may be 
written as 

or,  in the shorthand matrix form, 

In these equations, Zap are complex numbers giving the ratio of the transform vibratory force 
at coordinate a to the transform vibratory velocity at coordinate p. They are functions of frequency 
and may be called impedance parameters of the system. For a = p, the Zap a r e  called point im- 
pedance parameters, and for  u # p, they are called transfer impedance parameters. Alternatively, 
Zap may be considered as the ratio of vibratory force input at the a coordinate to vibratory velocity 
response at the p coordinate when all other coordinates a re  infinitely restrained (i.e., zero veloci- 
ties). Accordingly, the matrix [ Z a p ]  may be considered as the mechanical impedance matrix of the 
system, while the column matrix { V p }  represents the transform of velocities corresponding to the 
transform of input forces {F,}. 
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Heretofore, the developments have been analogous to those of the methods of dynamic influence 
and stiffness coefficients. Equation 6, however, expressed in terms of all the coordinates which 
have been defined, may not be in the most useful form. In many practical situations, some of these 
coordinates are not of interest either because impedance information at these coordinates is not 
desired, or these coordinates a r e  not accessible for  physical measurement. Frequently, the co- 
ordinates of interest are those at which subsequent interconnection with another system is antici- 
pated. Consequently, it is desirable or  necessary to express Equation 6 in terms of matrix quanti- 
ties referred to only the coordinates of interest, hereafter called "exterior coordinates." The 
coordinates not of interest are called "interior coordinates." 

If Equation 6 is rearranged, grouped and partitioned according to "interior" and "exterior" 
applied forces such that n coordinates a re  exterior and the remaining p coordinates are interior, 
Equation 6 may be written as 

= 
(7) 

The subscripted [zl, {v) and {F) a r e  the submatrices corresponding to the partition; the sub- 
scripts E and I denote respectively exterior and interior. In accordance with the reciprocity 
theorem for linear systems, 

where T denotes transpose. 

The expanded form of Equation 7 provides a set  of equations from which we can develop the 
matrices entirely in terms of quantities referred to exterior coordinates. Obtaining the submatrix 
{ v I }  from the second equation of the partitioned form and substituting in the first equation yields 

where 

{FEb) = ['EI] [ZII]- '{FI}  I 

"P PP Pl nl 

and [ Z , , ] - '  is the inverse matrix of [ Z I I ] ,  which is assumed nonsingular. 
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Equation 9 may be termed the "exterior equation'' of the system since all quantities now refer 
to exterior coordinates. The matrix [ZE] in this  equation then represents the internal impedance 
as seen from the exterior points, and differs conceptually from [Zap] in the original matrix equa- 
tion only in the coordinates to which it is referred. Here the matrix {Fb} is defined as the "blocked 
force matrix" of the system, and it represents the interior excitations as transmitted to the ex- 
terior coordinates for exterior coordinates fixed so that no motion occurs. In Equation 9, the neg- 
ative sign with F: denotes the change of reactions due to interior forces into equivalent externally 
applied forces. 

If a system contains no internal source of energy, the matrix of interior forces, {FI}, and 
consequently the matrix of blocked forces, {F:}, becomes identically zero. Such a system is 
termed a "passive" system as opposed to an "active" system when {F:} is nonzero. According to 
the foregoing developments, the activeness or  passiveness of any system may be arbitrary in that 
it depends primarily on the initial definition of interior and exterior coordinates. 

It follows from Equation 9 that the matrix of exterior velocities {VE} can be obtained explicitly 
by premultiplying through by the inverse matrix of [ZE] which is assumed nonsingular, 

The inverse matrix [Zl-' is termed the "matrix of mobility" [Y] . Frequently the use of [YI is more 
desirable than [Zl (see Section 7.3). At th is  point the choice is trivial. When the matrix {FE} of 
applied forces at exterior coordinates is zero, the velocity matrix of Equation 12 is significant 
enough to warrant the special t e rm "free velocity" matrix, expressed by 

In terms of the free velocity matrix, Equation 12 becomes 

{'E -'EO} ['E]-' {FE} ' (13') 

An alternative form of Equation 9 may be obtained in terms of the free  velocity matrix and the 
mobility matrix (inverse matrix of impedance) of the system, as follows. Premultiplying Equation 6 
by the inverse matrix [zQP]-l, which will be denoted by [Yap] yields 

where [Yl is the mobility matrix. 

Partitioning in te rms  of exterior and interior coordinates, Equation 14 can be written as 



Expanding Equation 15 provides a set of equations from which we can develop the matrices entirely 
in terms of quantities referred to exterior coordinates. Obtaining the submatrix {F,} from the 
second equation of the partitioned form and substituting in the first equation yields: 

{'E -'EO} = ['El i F E )  ' 
nn n l  n l  

where 

['E] = ['EE] - ['EI] ['111-'['IEI ' 
P" nn nn np PP 

The determinant of [Z,] in Equation 9, or of [YE] in Equation 16 (when damping is neglected) 
may be recognized as the frequency determinant of the system observed from the exterior coor- 
dinates. Upon expansion it yields a polynomial in w2, the roots wn of which are known as the natural 
frequencies. Cooresponding to each value of on, an amplitude matrix may be computed for each 
natural mode. 

4. MULTI-DIMENSIONAL IMPEDANCE 

The multi-dimensional or one-dimensional aspect of a system is characterized by the nature of 
the matrices of Equation 7. The necessary and sufficienl condition for  one-dimensional systems is 
uniformity in coordinate types (rectilinear o r  rotational) which define excitation and response of the 
system confined to a single dimensional space. For example, a single terminal having three recti- 
lineal and/or rotational types of coordinates is not one-dimensional within the scope of this definition. 

The general nature of multi-dimensional systems invariably requires consideration of both 
rectilinear and rotational types of impedance analysis and measurement. Rearranging and group- 
ing with respect to rectilinear and rotational impedance, as well as to interior and exterior coor- 
dinates, and partitioning accordingly, Equation 6 may be expressed as 

I 
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where the superscripts 6 and B respectively represent rectilinear and rotational. It is apparent in 
Equation 19 that there a re  four possible types of impedance: 

[Zss]  = point o r  transfer impedances defined by ratios of rectilinear forces to rectilinear 
velocities, 

[ ZSe] = transfer impedances defined by ratios of rectilinear forces to rotational velocities, 

[ZeS] = transfer impedances defined by ratios of couples to rectilinear velocities, 

[Zoo] = point o r  transfer impedances defined by ratios of couples to rotational velocities. 

In accordance with the reciprocity theorem for linear systems, these impedances and their matrices 
possess the following convenient transpose properties: 

5. INTERCONNECTlON OF SYSTEMS 

In Section 3 it was shown how the performance equation of a system can be expressed in 
terms of coordinates of anticipated interconnections, heretofore defined as  exterior coordi- 
nates. Let the set  of these exterior coordinates corresponding to {VE} be common to two 
systems which a re  otherwise separated. Block diagrams representing the two systems are  
shown in Figure la. The systems will be connected as shown by Figure lb,  and their com- 
bined behavior will be examined in terms of interfacial critical (resonant and anti-resonant) 
frequencies and response. 

The individual performance of the systems 
prior to connection can be described with ref- 
erence to Equation 9 by the set of exterior 
equations : 

where the superscripts I and I1 designate a 
specific system. The subscript E is dropped 

a. Systems before interconnection. 

b. Composite system. 

Figure 1 -Block diagrams of (a) subsystems 
and (b) composite system. 
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Kith  the  understandine t h a t  a l l  q u a n t i t i e s  now r e f e r  t o  e x t e r i o r  coordinates. 
impedance mat r ices  CZIJ and [ Z I I J  a r e  roughly the counterpar t s  of the  "driving 
poin t"  impedances, looking back from t h e  i n t e r f a c e  commonly assoc ia ted  with one- 
dimensional interconnected systems. 

The 

Assuming the identification of coordinates of system I to be physically and mathematically 
compatible with those of system 11, then m = n in Equations 21 and 22. When the systems are com- 
bined to form a composite system, Equations 21 and 22 must satisfy a force equilibrium condition 

and a velocity compatibility condition* 

tv) = {VI} = {VII}  , 
nl nl nl 

where the nonsuperscripted quantities refer to composite quantities at the interface. 

Satisfying these conditions in Equations 21 and 22, and subsequently summing up these equa- 
tions yields 

where 

[HI = [Z' +Z"] 
nn nn 

Equation 25 is termed the "composite systems equation," which is the equation of equilibrium in 
terms of the interconnection velocity {VI for the complete system and the matrix [HI ,  called the 
"interconnection matrix." 

Thus, in the calculation of the interconnection velocity, the complete system has been regarded 
as an assembly of the subsystems subjected to the equivalent loading {R) of Equation 23. The sum- 
mation { F ~ I  + FblI} implies addition of the corresponding interconnection reactions for intercon- 
nections blocked (i.e., blocked forces), while {F' +F'I} is the loading matrix for externally applied 
forces on these interconnections. 

In the case of free vibrations, 

*The nature of the mechanical connections at the interconnection (Le., boundary conditions) are implicitly defined by the force equili- 
brium and velocity compatibility equations. 
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and consequently 

and Equation 25 reduces to 

[HI {VI = {O} , 

a set of linear homogeneous equations in V. The roots of the frequency determinant 

A(H) = 0 (30) 

correspond to the natural frequencies of the composite system observed at the interconnection. 

6. ANALYTICAL APPROACH 

In order to evaluate the matrices of the foregoing sections, analytical and experimental pro- 
cedures are  recommended in the sections that follow. The application of these procedures in con- 
junction with automatic data processing techniques will  greatly enhance the computational schemes 
required by theory. 

The basic procedure for analytical determination of the desired matrices discussed in the 
foregoing sections may be summarized as follows: 

Choose a set  of appropriate grid points for the system and identify the required general- 
ized coordinates. In terms of these coordinates, obtain the matrix equation of motions 
from which the coefficient matrices [map], [kap] and [cap] are  determined. 

Determine the matrix of applied forces (or moments) {F) . 
By elementary matrix operations, determine the submatrices [ZE] , [ZEI], [ZIE], [ZII],  

Determine [zE] and {F:} from Equations 10 and 11. 

Determine the response {VE} from Equation 12. 

Setting the damping coefficients to zero in the frequency determinant, determine the 
critical (resonant and anti-resonant) frequencies and the corresponding natural modes. 

[ z l l ] - l  ' {'E}' {'I}, {FE} and {FI} from [zap]7 {Fa} and {'p}. 

If the effect of connecting a second system to the first system is desired, the following addi- 
tional steps a re  required: 

(vii) Repeat steps (i)-(vi) for the second system. 

(viii) Determine the interconnection matrix [HI from Equation 26. 
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(ix) Determine the loading matrix {R) from Equation 23. 

(x) Determine the response at the interconnection from Equation 25. 

(xi) Neglecting damping, determine critical (resonant and anti-resonant) frequencies of com- 
posite system from Equation 30 and compute corresponding natural modes. 

7. MEASUREMENT APPROACH 

Experimental measurement of the impedance matrix [Z,] requires the acquisition of a com- 
bination of experimental data which will supply sufficient information for evaluating the matrix 
elements of [z,] . The following schemes for experimentally determining matrix [z,] are based 
on the fact that if  a performance equation (Cquation 9 or 16) is to truly describe the dynamic be- 
havior of the system, matrix [Z,] must be compatible with the set of velocities {v,} and forces {F,} 

measured on the system at the specified coordinates. 

7.1. Determination of Impedance Parameters 

7.1.1 Active Systems 

In the experimental determination of impedance parameters, the measurement of free .velocity 
v, is more readily accomplished than that of blocked force Fb . This is due to the fact that ideal 
physical restraint conditions required for block force measurement a re  seldom realizable. By 
substituting Equation 13 into Equation 12, the performance equation for active systems may be 
written in modified form as 

where the subscript E has been dropped. Hereafter, the absence of E implies that all coordinates 
are exterior. For a system of n coordinates, the number of impedance parameters will be n2. 
Theoretically, only n(n + 1)/2 number will have different values, since Zap = Zp,, for ( a  # p )  . It is 
highly desirable, however, to evaluate all n2 parameters since this will provide a means of valida- 
ting the assumption of linearity of the system by use of the symmetric condition zap = zpa ( a  # p). 
Since the column matrix of free velocities must also be determined, a total of n + 1 tests are  re- 
quired at each frequency to evaluate all the impedance matrix elements and the elements of free 
velocity of Equation 31. 

Test 1: With the system suspended on its natural restraints, or, in the case of a free system, 
on a low frequency suspension such that all exterior coordinates are unattached (zero load im- 
pedance), operate the system and determine the phasor* of all resulting free velocities. Denote 
these free velocities by {Vi ’ )  ( w ) }  where the superscript (1) represents test number. 

*The term “phasor,” a s  used here, implies magnitude and phase of a steady state sinusoidal quantity where phase measurement is made 
with respect to an arbitrary fixed reference. If a quantity is not steady state sinusoidal, Fourier transform of the quantity is required 
for determining the phasors. 

10 
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Test n + 1: With the system suspended as in Test 1, operate the system and apply an external 
force at one of the exterior coordinates (e.g., the uth coordinate) and determine the phasor of all 
resulting velocities at all exterior coordinates and the phasor of the applied force. Denote these 
velocity phasors and this applied force phasor respectively by {W2) (a)} and {FC2) ( w ) }  , where all 
elements of {F(2)} except the U* element are zeros. Repeating this test n times, each time ap- 
plying a force at successively different coordinates and determining the phasor of all resulting 
velocities and the applied force, provides a set of experimental data from which the following re- 
sulting matrix equations may be solved simultaneously for  the elements of [ZI at any specified 
frequency, say w , :  

where the test  number k = 2, 3, - - . , n f  1. 
7.1.2 Passive Systems , 

For passive systems, the matrix of free velocities {V,} is identically zero and Equation 31 
reduces to 

Accordingly, tests of the type outlined under Test (n  + 1) for active systems (except now there a re  
no f r ee  velocities) provide a set of experimental data f rom which the resulting matrix equations 
(similar to Equation 32) which follow may be solved simultaneously for the elements of [ZI of the 
passive system at any specified frequency 0,: 

where k = 1, 2, 
o r  presence of an appropriately determined free velocity or  blocked force matrix, these determ- 
inations based on Equation 34, if supplemented by an independent determination of free velocities, 
may also be employed for active systems. 

, n .  Since passive and active systems are conceptually related by the absence 

7.2. Determination of Mobility Parameters 
The solutions of Equation 32 o r  34 when n > 3 will invariably require the use of digital com- 

puters. A more practical procedure which considers the computation of elements of the inverse of 
the impedance matrix (mobility matrix) can be made available as follows: Equation 32 in its inverse 
form, 

(35) 

11 



where [Yl is the mobility matrix, and expanded, can be written as follows (assuming force excita- 
tion at a single coordinate to be taken in numerical order with the subscript of the coordinates): 

V i 2 )  (w,) - VJ,:) (w,) = Y,, (w , )F , (~ )  (w,) + 0 + 0 + + o  

Vi2) (a,) - Vi,:) (a,)  

V,(,) (w,) - Vo(,i) (w, )  

= Y,, (w,) F J 2 )  (w,) + 0 + 0 + 

Yn, (w,) F,(,) (a,) + 0 t 0 t e * -  t o  

+ o  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

= 

v,("+') ( w , )  - VJ,',) (w,) = 0 + 0 f * * .  + Yln (w,) Fn(n+l) (w,) 

v,("+l) (w , )  - v,,(:) (w,) = 0 + 0 + * e -  + Y,n (w,) Fn(ntl) (w,) 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

(36) vn(n+l) ( w , )  - Vdi) (w,) = 0 t 0 t 1 . .  + Ynn (wo)Fn(ntl)  ( w , )  . 

From Equations 36 the elements of the mobility matrix are readily computed as 

where a ,  p = 1, 2, 3, - - - 9 n. 

For the case of passive systems wherein no free velocities a r e  present, Equation 36 and con- 
sequently Equation 37 reduces to 

where the superscripts ( p  + 1) have been modified to be compatible with the test number shown in 
Equation 34, 

The complete determination of the impedance or  mobility matrix requires performing the above 
procedures over all frequencies of interest. The impedance matrix [Zl may be obtained by per- 
forming the inverse of the mobility matrix, Le., [Zl = LY1- l .  

7.3. Significance of Mobility and Impedance Parameters 

It is evident in the foregoing analytical procedures that the significance of mobility parameters 
versus impedance parameters is primarily one of utility. Since they are mathematically related 
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by the matrix inverse relation 

[ZI = [Yl- '  , (39) 

the choice may depend on whether force or velocity response is considered as the unknown, or may 
depend on which is the more desirable parameter for  describing one's interest. In problems 
dealing with creating motions, the use of mobility may be preferred; in problems dealing with im- 
peding motions, the use of impedance may be preferred. 

A greater significance which is related to 
the measurement of these parameters is dem- 
onstrated by the invariant and variant property 
of the elements of the mobility and impedance 
matrix, respectively (Reference 4). Consider 
a system of threedegrees of freedom as shown 
in Figure 2a. The performance equation of 
this system in terms of the mobility matrix is 

where {V) is the column vector of resultant 
velocities corresponding to the column vector 
of applied forces {F}. The elements of the 
mobility matrix [YI may be evaluated by the 
method of Section 7.2. When only F, is applied 
and X, is considered the exterior coordinate 
(Figure 2b), the performance equation is simply 

v, = 

from which 

Y l l  

a.  Block representation of a one-dimensional/ three degrees 
of freedom system. y M . . M j  
TmTQTl F1 I X I  

b. Block representotion when only F ,  and x 1  are Considered. 

F l  # X I  F 2 ,  x2 
C .  Block representotion when F ,  , F2 , x l  ,and x2 

are considered. 

Figure 2-Block representation of a system with 
varying number of coordinates under consideration. 

Y l l  Fl ' 

The performance equation when only F, and F2 a re  applied, and X, and x2 are considered the ex- 
terior coordinates, (Figure 2c) is 

13 
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from which the elements of [Y] , evaluated by method of Section 7.2, are: 

v2 

F2 
Y,, = - * 

v2 

Fl 
Y,, = - ' 

Vl 
F2 

Y,, = - ' 
Vl 
Fl Y,, = - ' 

It is noted that Y,, remains the same as when only X, is considered. Considering all three co- 
ordinates xl, x2 and x, with applied forces F1, F, and F, , the performance equation becomes 

where the elements Yap  (a, p = 1, 2) remain the same as when only x, and x, are considered and 
the additional elements are evaluated as 

v3 Y,, = - . v3 

'23 - Fl '32 = F3 
v3  Y,, = - ' 

v 2  - -  Vl Y,, = - 

Accordingly, the elements of the mobility matrix for the system a r e  seen to be invariant, in this 
manner, with respect to the number of coordinates considered. Now consider the computation of 
the elements of the impedance matrix using Equation 39. A general element may be computed 
from 

(-1)"'pA 
ap 9 zap = A(Y) 

where the numerator and denominator a re  respectively the adjoint and determinant of the mobility 
matrix. As the numerator and denominator in Equation 41 are dependent on the order of the matrix 
[Y] and are  in general not equal, the elements of the impedance matrix consequently a re  variant 

with respect to the number of coordinates considered. This implies that as additional coordinates 
a re  considered, each previous matrix element must be recomputed. 

The invariant property of the mobility matrix makes it desirable and natural to measure and 
use mobility parameters, and to consider impedance parameters as derived quantities with certain 
utilities. Furthermore the use of the term "driving point," frequently associated with one- 
dimensional systems, possesses true counterparts in multi-dimensional systems when used only 
with elements of the mobility matrix. 

For active systems, the choice of free velocity or blocked force measurements requires some 
consideration. Mathematically, the f ree  velocity matrix is simply related to the blocked force 
matrix through Equation 13. Computationally, free velocities can be obtained from blocked forces 
if the mobility matrix is known. Experimentally however, the measurement of blocked forces in 
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I 

Active f 

System 

general is exceedingly difficult because of the physical constraint required by theory. The meas- 
urement of f ree  velocities is more easily accomplished and consequently the more natural quan- 
tities to measure. 

Active 
Restraint System 

zF:'Ff t v f  - - Pel  - ---) 
Vr 

8. DETERMINATION OF IMPEDANCE IN PRESENCE 
OF PARTIAL EXTERNAL RESTRAINTS 

In the laboratory, the impedance matrix [ZE] of a system sometimes cannot be determined 
readily for  ideal f ree  conditions (when the system is naturally free) o r  for natural restraints* 
(when the system is naturally restrained). Some of the free coordinates may be restrained to some 
degree, or  some of the natural restraints may be altered. In some cases the required measurement 
instrumentation may impose significant restraints. A formal method to determine the impedance 
[ zE] of the free system from an impedance [ZE] determined with the system unnaturally restrained 
in a known fashion is developed in the following. 

Consider an active system having a class of u exterior coordinates which a re  free of restraints 
and another class of v exterior coordinates which a re  restrained in a known fashion. When the set  
of free coordinates is denoted by subscript f and the set  of restrained coordinates by r ,  the system 
when entirely f ree  of restraints (Figure 3a) 
may be expressed as 

L -  vv - 

which is obtained by substituting 

[zl-' = CY1 

in Equation 12, and partitioning in terms of 
submatrices corresponding to f ree  and re -  
strained coordinates. When the restraints a r e  
expressed in terms of a known impedance 
matrix [Ze ] as shown in Figure 3b, the applica- 
tion of the composite equation (Equation 25) at 
the restrained coordinates yields 

a. Block representation of "Free" (naturally restrained) active system. 

I I I 1 

I I 1 

b. Block representation of restrained system. 

c .  Equivalent black representation of Figure 3b. 

Figure 3-Block representation of a system under 
(a) natural restraints, and (b, c)  unnatural restraints. 

*Hereafter, no  distinction will be made between free and naturally restrained systems. 
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where 

and {V, 1 are the interconnection velocities. As shown in Figure 3b, {Fr' + F i }  are the externally 
applied forces at the restraints. 

The experimental evaluation of [YI of the restrained system which will be denoted by [Yl may 
be accomplished in a manner similar to that of Section 7.2 by applying components of {Ff} and 
{Fr' + F:} one component at a time, measuring the resulting velocity at all coordinates, and finally 
solving for the elements of [Yl in 

The objective is to determine the unknown [YI of the "free" system from the "measured" [VI of 
the restrained system and the known restraint impedance [Ze]  . This may be accomplished by con- 
sidering the effect of the restraint system as reaction forces on the free system as shown in Fig- 
u re  3c when {Fr'} and {Fe'} a r e  respectively the externally applied forces on the free and the re- 
straint system prior to connection, and {F:} and [Ze] {vr}  a r e  the reaction forces due to the 
restraint system. Accordingly, the net forces acting at the r coordinates of the free  system of 
Figure 3c are 

Using Equation 44, 

or 

{R) = {Fr - F P }  + [ Z e ] { v r }  

The substitution of Equation 48 in Equation 45 yields 
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The determination of [YI from [Yl may be accomplished by suitably comparing Equation 49 
with Equation 42. This is successfully performed by first noting that, as the result of the equiva- 
lence of Figures 3b and 3c, 

{VI = {VI ' 

and then operating on Equation 49 to yield the form of Equation 42. 
desired relation: 

I uu uv  vv 

V U  vv vv 

This operation yields the 

T Y f f l  uu Pfrq u v  

Frequently it is desirable to determine the effects on the system's mobility matrix as a result 
of some known partial restraints. This is accomplished by solving [TI in terms of [YI in a manner 
similar to the above. Accordingly the result is: 

[I1 - [ Y f J  [[ye] + [ Y J ]  -'I 
uu u v  v v  

v v  vv J vu 

T Y f f I  uu Ffrq u v  

vu vv _I - 

If all coordinates are restrained, Equation 51 reduces to 

[Yrr]-' = [YJ' + [y,]-1 9 

a form of the Interconnection Matrix previously defined by Equation 26. The matrix of impedance 
[ZI or  [ Z ]  may be obtained by application of the matrix inverse relationship between the imped- 
ance and mobility matrix, i.e. 

o r  
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9. DETERMINATION OF FREE VELOCITY 
IN PRESENCE OF EXTERNAL RESTRAINTS 

Frequently the free velocity matrix {VEo} of an active system cannot be determined readily 
under ideal free conditions. It is therefore desirable to develop a formal relationship to determine 
the free velocity matrix of the system from the velocity matrix determined with the system re- 
strained in a known fashion. 

As in the previous section, the desired relationship may be obtained by considering some of 
the exterior coordinates f to be free and the remaining coordinates r to be restrained in a known 
fashion (Figure 3). Thus, when the system is free, Equation 16 describing the free  velocity of the 
active system may be written as 

which is obtained by partitioning in terms of submatrices corresponding to free and restrained co- 
ordinates. When the system is restrained by impedance [ Z e ]  as shown in Figure 3b, the effect of 
the restraint system on the free system may be considered in terms of reaction forces as shown 
in Figure 3c. Thus, the net forces acting on the free system at the restrained coordinates a re  
given by Equation 46. Accordingly, replacing {F~} in Equation 52 by Equation 46, and denoting the 
measurement of velocities { V f }  and {V,} under the restrained conditions as {vf } and {vr} respec- 
tively, yields 

For free velocity measurements at the free and restrained coordinates, 

(54) {Ff} = {Fr’} = {F:} = 0 . 

Substituting the condition of Equation 54 in Equation 53 and simplifying yields 

which is the desired relation of free velocities in terms of velocities measured under the restraint 
condition. The procedure consists of first determining the mobility of the free system [YI by the 
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method of Section 8 and the blocked forces of the active restraint system.* Next, measure the 
velocities of the active system at the free and restrained coordinates {if} and {sr} respectively 
and apply Equation 55 to obtain the true free velocities {Vo , f }  and {Vo, r }  of the active system using 
the known mobility [YI . It may be seen that if  all coordinates are free ([Ye] + a), 

ing upon MI. The force is applied at a point on 
the plane of symmetry, at a distance E above 

and 

u tal component f COS Ut ,  and a vertical component 
f y  s i n w t .  

f r  
I The degrees-of-freedom of the center of 

as would be expected. 

I 4 
f x  

10. EXAMPLES OF APPLICATION 

eC.G. 
M l ,  ' I  

gravity a re  as shown in the upper right corner 
of each body, and for  small distortions about the 

10.1. Analytical Approach 

generalized displacements x P  ( p  = 1,2 ,  - * a ,  6). 
In this example the coordinates x.,, x5, and x6 
will be referred to as "exterior." 

I 
10.1.1 Energy Expressions Fa 

'Note that {F,"} can be obtained from free velocity measurements using Equation 13. 

I 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

L A  
v v  0 - 4  
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I 

by: 

2p = 2Kl X: t 2K, b2 xJ” t 2K2 x: + 2K, a’ x,” 

+ 2K, (xl  - x,)’ + 2K, (cx3 -dx,I2 

t 2K, (x2  - x ~ ) ~  + 2K, (ex, , 

10.1.2 Equations of Motion 

Applying Lagrange’s equation for nonconservative systems yields the equations of motion: 

M I G l  + 2(C1+C, )k1  - 2C,k, + 2(K,+K3)x1  - 2K3x4 = 
f ,  I 

M,; ,  t 2 ( c 2 - t c 4 ) k 2  - 2c,kS + ~ ( K , + K , ) x ~  - 2K4xs = f ,  

I , S 3  + 2 ( C 1 b 2 + C , a 2 + C 3 c 2 + C 4 e 2 ) k 3  - 2 ( C 3 c d + C 4 e 2 ) k 6  

+ 2 ( K , b 2 t K 2 a 2 + K 3 c 2 + K 4 e 2 ) x 3  - 2 ( K 3 c d + K , e 2 ) x 6  = f ,  , 

M, S4 - X 3 k l  + X, k4 - 2K3x1 f 2K, x, = f ,  , 

M, X s  - X, k, + X, ks - 2K, X,  -t 2K, xS = f ,  , 

I,  X6 - 2(C, cd +C, e 2 )  k3 + 2(C, d2 -t C,’e2) k, 

- 2 ( K 3 c d + K 4 e 2 ) x 3  + 2 ( K 3 d Z + K 4 e 2 ) x s  = f ,  3 

- , 6) are generalized forces to be determined later. where f a  (u = 1, 2, - 
20 
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10.1.3 Coefficient Matrices 

From the equations of motion, the coefficient matrices a re  obtained as: 

[map1 : 

= m22 = Ml 

m33 = I1 ' 

m44 = m55 = M' ' 

m66 = '2 ' 

map = 0 : a. # & a ,  ,R = 1,  2, , 6 )  , 

k,, = 2(K, +K,) , 

k" = 2(K, +K,) , 

k,, = 2(K, b2 + K, a' +K, c' + k, e ' )  , 

k,, = 2K, 7 

k,, = 2K, , 

k,, = 2(K, d' +K, e') , 

k,, = k,, = - 2K, , 

k25 = k52 = - x, 9 

k,, = k,, = - 2(K, cd+K, e') * 

A l l  others are zero. (59) 
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[cap 1 : 
= 2 ( c 1  +C,) , 

C', = 2 ( c ,  +c4)  I 

c l l  

= 2(C, b2 + C, a2 +C, c2 + c, e , )  
c33 

c,, = 2c, , 

c,, = 2c, 7 

c,, = 2(C, d' + C , e 2 )  , 

14 = c,, = - 2c, , 

C 2 5  = C,' = - 2c, , 

c , ~  = c,, - 2(C, c d + C , e 2 )  . 

A l l  others a re  zero 

From Equation 4, 

[ Z u P l :  , 

Z , ,  = i w M ,  + 2(C, + C , )  + 2(K, + K , ) / i u  , 

i w M 1  + 2(C, + C,) + 2(K, +K,)/iw , 

PI? 1 

PI?) Z,, 

Z,, 
= i w  I ,  + 2(C, b' +C, a' + C3 c2  +C, e ' )  + 2(K, b' + K ,  a' + K ,  c' +K,  e2) / iw , (Z::) 

Z,, = i w M ,  + 2C, + 2K,/iw , (2,"; ) 

Z,, = i w M ,  + 2C, + 2K4/iw , PEP ) 

(ZEY ) 

PI? ' Z E 3  

Z,, 
= i w I z  + 2(C,d' +C, e ' )  + 2(K,d'  +K, e 2 ) / o  , 

I 

Z,, Z,, - 2(C, + K 3 / i w )  , 

Z,, Z,, = - 2(C, + K , / i u )  , ( Z I P  ' Z E 3  

'3, = '63 
= - 2(C, cd + C, e ' )  - 2(K, cd + K, e')/iw . (',"E" zEBe)(61) 
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The type of impedance has been designated on the extreme right. Accordingly, rearranging rows 
and columns, and subsequent partitioning of [Zap ] yields the following submatrices:* 

0 

['E11 - - 

z; :] ' '63 

10.1.4 Generalized Forces 

The total virtual work done by the applied forces on the system is 

sw, = f y  8x2 + fx sxl - fx E 8x3 

T h e s e  submatrices are required by Equation 10 to determine [ZE]. 

(63) 
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The generalized force f a  (corresponding to x,) is defined by 

8Wa = fa 6x, , 

fromwhich f ,  = fx, f 2  = fy, f 3  = - f x c .  Thus 

(64) 

where Fx, FY and - E Fx are the Fourier transforms of f ,  , f ,  and f 3  respectively. 

10.1.5 Determination of [Z,,]-' 

In Equation 10, the inverse matrix of [ Z I I ]  is required for the determination of [zE].* Let us 
denote the elements of [ Z I I ] - l  by h a p .  Then hap is related to Z,, by 

3 

where Fa, is the so-called "Kronecker delta." 

Since [ Z I I ]  is a diagonal matrix, Equation 66 reduces to 

10.1.6 Determination of [ Z, ] 
From Equation 10, the general element of [Z , ]  i s  given by 

8=l k = l  

*The inversion for this-particular example is easily obtained from Equation 66. In general, inversion of higher orders may require 
machine computation. 
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Since, for this example: 

then 

and 

'E ,aa  = ' E E , a a  - 2  ' E I , a a h I I , a a  ( a  = p = 1, 2, 3 )  

Thus 

0 

10.1.7 Determination of {F&} 

From Equation 11, 

3 3  Fca = 7, T , ' E I , a k  ' I 1 , k t F I , 8  ( a  = 1, 2, 3 )  9 

but for this example, F& = ZEI,aa  h I I , a n  F I ,  a , from which 



I 1 

I m 

Figure 6-Lumped parameter equivalent of a 
simplified passive two-dimensional system. 

C.G. MI,lf 8 10.1.8 Determination of {VE} 

I 
, $ 

Figure 5-Lumped parameter equivalent of the composite 
system composed of systems I and 11, with connection at 
center of gravity of M,I. 

From Equation 12, 

10.1.9 Effect of Subsystems 

Next we shall consider the effect of connecting a second system to the exterior coordinates x4, 

x5, and x6 (Figure 5). The system is assumed to be passive (Figure 6). 

Letting superscripts I and I1 denote quantities corresponding respectively to the first and 
second system, the following is obtained: 

where 

- 
0 0 

0 0 

I1 - z I1 2 z I1 
'44 ( 14 ) / 11 

11- z I1 2 z I1 
0 0 '66 ( 36)/ 3.3- 
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~ ~ $ 1  = iwI:I + g z  (c," + K I '  1 / i 4  ' 

z4y = C;I + K , " / i w  , 

zsy = C;I + K;'/iw , 

Z," = f 2  (C," +K," / iw)  , 

zl\I = - (C,"I + K l y i w )  , 

zz'; = - (C;I +K; ' / iw)  , 

~3'6' = - gf (C," +K,"/iw) . 

From Equation 26, the interconnection matrix is 

(73) 

1 0 0 

[ H a p 1  = 0 

0 

- 

(74) 0 

0 

The roots of A(H) = 0 are  the critical frequencies of the composite system. 

If Q,, denotes the elements of [ H , ~ ] - ~ ,  then 

(75) 
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It follows from Equation 23 and 25 that the response of the composite system at the interconnection 
of the two systems is: 

10.2. Measurement Approach 

The primary purpose here will be to demonstrate the experimental evaluation of the mobility 
matrix [yE] of each of the systems, to obtain their corresponding interconnection matrix and to 
describe the resulting response at the interconnection. 

10.2.1 Determination of Mobility Parameters 

Equation 35 for passive systems* is 

where k = 3 since there are three exterior coordinates in each system. 

10.2.2 System I 

With the system suspended on a low-frequency suspension such that all exterior coordinates 
(x4 ,  x5, x6) a r e  unattached (zero load impedance o r  infinite mobility), apply a sinusoidal force of 
constant frequency W ,  at x4 and measure the phasor (referencing phase angle with respect to the 
applied sinusoidal force) of the resulting velocity at x4, x5 and x6. Denote these velocity phasors 
and this single applied force phasor respectively by 

v p  (w,) = 

v p  (w,) ,= 

Vi') (a , )  = 

Fd') (w,) = Fd') (w,)l (wo) = 0 . 
(77) 

*Although system I is truly active, the use of Equation 35 for passive systems supplemented by an independent determination of free 
velocities is equally applicable. 
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Repeating the above test two more times, each time applying the sinusoidal force of frequency wo 
successively at x5 and x6, provides the additional set  of measurements similar to (77): 

From (77), (78) and (79) the elements of the mobility matrix a re  simply computed as 
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. . .. ... 

In Equation 80 the condition Y a p  = Ypa  (a # p )  provides a check on the linearity of the system. 

The complete determination of the mobility matrix requires repeating the above procedures 
for all frequencies of interest. 

10.2.3 System II 

The determination of the mobility matrix for system I1 is accomplished in a manner similar 
to that for system I. The exterior coordinates of this system a re  defined as x:', xgII and x," as 
shown in Figure 6. 

10.2.4 Determination of Free Velocities 

In this example, it is necessary only to determine the free velocities of system I since system 
I1 is passive.' With the system suspended as before, the resulting free velocity phasor at all ex- 
terior coordinates due to the excitations fx and fy at frequency w0 may be measured directly. A 
convenient reference for phase angle measurements is the free  velocity at one of the coordinates. 
Assuming that the phase angle of these measurements is made relative to the free velocity at co- 
ordinate x4,  the f ree  velocity phasors may be expressed as 

L 

The complete determination of free velocity requires operating the system over all frequencies of 
interest and performing the above procedure. 
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10.2.5 Interconnection Matrix 

If we denote the [YE] for the active system and passive system respectively by superscripts I 
and 11, the interconnection matrix may be obtained from Equation 26 as 

[H(w)] = CY1 (w) ] - '  + [YII  ( w ) ] - '  , 

where the matrix inversion of [ Y ( w ) ]  may require digital machine computations. 

10.2.6 Prediction of Composite Response 

The response at the interconnection of the two systems may be predicted by 

{ V ( w ) }  = - [ H(w)] -' (FbI ( w ) }  

where {Fb3 can be obtained from 

{Fbl (4) = [Y' <u>]-' {vo @)} 

11. DISCUSSION 

The objective of this paper is to present a systematic approach for the analytic and experi- 
mental determination of mechanical impedance and its associated effects on dynamic response of 
complex mechanical systems. The nature of the formulation of the approach is sufficiently general 
for extension to cases of many types of distributed systems subject to varied steady state, transient 
and random excitations. 

Although the concepts related to the use of mechanical impedance expressions have been ex- 
plored extensively in the development of methods for shock and vibration control, they have been 
limited to a large extent to systems which permit analysis of only one-dimensional types (Refer- 
ence 2). Limited and specialized application to multi-dimensional systems has been studied only 
recently. As shown in this study, the treatment of mechanical impedance of multi-degree of freedom/ 
multi-dimensional systems may be approached by adopting certain aspects of matrix methods of 
structural analysis, together with appropriate interpretation of quantities related to the concepts 
of mechanical impedance (e.g., blocked force, free velocity, point and transfer impedance). 

The problem of describing complex mechanical systems so as to consider the information 
available about the individual subsystems, involves the formulation of impedance matrices and 
interconnection equations wherein the conditions of force equilibrium and velocity compatibility, 
implicitly imposed, are equivalent to physical connection of the subsystems. The characteristic 
values of the interconnection matrix correspond to critical frequencies of the composite systems as 
observed at the interconnection. Moreover, the methods of interconnection developed are applicable 
to many systems of complex combinations. Systems of mixed types such as electro-mechanical 
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and acoustic-mechanical may be treated using these methods. With regard to environmental test- 
ing, the methods of interconnection further provide a sound theoretical basis for performing sub- 
assembly testing which would obviate the demand for  increasingly large complex environmental 
test facilities fo r  future generation aerospace systems. 

On the basis of the results of this study, the following recommendations are made: 

1. Suitable experiments should be undertaken to determine the proper extent of the practical 
application of the methods herein presented. 

2. Effort should be directed toward developing a computer program for mathematical compu- 
tation of the required matrix relationships. 

3. Effort should be directed toward the development of sensors and/or data reduction methods 
for  the measurement of multi-dimensional impedance parameters. 

4. Effort should be directed toward the investigation of experimental techniques for determin- 
ing these parameters using random and transient types of force excitations. 

5. The feasibility of applying the results of this study to environmental test simulation should 
be investigated in further studies. Included should be a laboratory study of simulation and 
control of impedance of multi-dimensional models. 

Goddard Space Flight Center 
National Aeronautics and Space Administration 

Greenbelt, Maryland, September 21,  1966 
124-08-05-02-5 1 

REFERENCES 

1. On, F. J. and Belsheim, R. O., "A Theoretical Basis for Mechanical Impedance Simulation in 
Shock and Vibration Testing of One-Dimensional Systems," NASA TN D-1854, August, 1963. 

2. Plunkett, R., "Colloquium on Mechm-ical Impedance Methods for Mechanical Vibrations," 
American Society of Mechanical Engineers, New York, 1958. 

3. On, F. J., "Preliminary Study of An Experimental Method in Multi-dimensional Mechanical- 
Impedance Determination," 34th Shock and Vibration Bulletin, Naval Research Laboratory, 
Bulletin 34, Part 3, pp. 27-35, December, 1964, AD 460 001. 

4. O'Hara, G. J., "Mechanical Impedance and Mobility Concepts," U. S. Naval Research Laboratory, 
Report 6406, July 29, 1966, AD 638 206. 

32 



Appendix 

Symbols 

E 

8 

ss  

80, es 

E 

EE 

E l ,  IE 

f a  

f * 

f Y  

I 

I1 

I 

K 

M 

N 

P 

linea dimension for example problem 

damping coefficient 

dissipation energy 

distance above c.g. of mass MI 

superscript for rectilinear quantities 

superscript for rectilinear couplings 

superscripts for rectilinear- rotational couplings, or conversely 

subscript for exterior quantities 

subscript for exterior couplings 

subscripts for exterior-interior couplings, o r  coiiversely 

generalized force corresponding to ath generalized coordinate 

applied force in x-direction 

applied force in y-direction 

subscript for interior quantities 

subscript for interior couplings 

mass moment of inertia 

stiffness coefficient 

mass 

number of degrees-of-freedom 

potential energy 

Fourier transform of f a  (t) 
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. . . . ~ 

V p  ( w )  Fourier transform of X p  ( t )  

n number of exterior coordinates 

B subscript for rotational quantities 

OB subscript for rotational couplings 

T kinetic, energy 

t time variable 

I ,  I1 superscripts for specific subsystems 

w circular frequency 

xp 

X p  velocity 

iip acceleration 

displacement corresponding to Pth coordinate 

Z a p  ( 0 )  frequency dependent characteristic property of sys tem 

6WT total virtual work done by applied force 

6 x a  virtual displacement 

{ } denotes column matrix 

{ }T denotes transpose of { 1 

[ 1 denotes square or  rectangular matrix 

[ I T  denotes transpose of [ 1 

denotes inverse matrix of square matrix [ 1 

[ m a p ]  inertia matrix 

[ c a p ]  damping matrix 

[ k a p ]  stiffness matrix 

{ F.} transform force matrix 

{F:} blocked force matrix (transform) 

{ vP} transform velocity matrix 

{ vE0} transform free velocity matrix 
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[Zap] mechanical impedance matrix for system 

[ZE] impedance matrix looking back from exterior coordinates 

[Yl inverse matrix of [zI 

[ Ze] impedance matrix of restraint system 

[Hap] interconnection matrix 

A(H)  determinant of [Hap] 

[Qap] inverse matrix of [ H a p ]  
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